Dextran grafted silicon substrates : preparation, characterization and biomedical applications
نویسندگان
چکیده
Biodevices used in the cardiovascular system suffer from well-known problems associated with surfaceinduced gas embolism and thrombosis. In order to improve the biocompatibility of these devices, biomimetic coatings show good promise. We recently synthesized a coating layer of dextran, a relatively simple and well characterized neutral polysaccharide, with the purpose of mimicking the cells' glycocalyx layer, that prevents non-specific cells-protein interactions. Systematic physical chemical characterization was performed on coatings obtained both from commonly used polydisperse dextrans and low-dispersity dextrans in the 1-100 kDalton molecular weight range. We have combined standard surface analysis techniques, such as ellipsometry, contact angle measurements and AFM, with less traditional vibrational spectroscopy techniques in the characterization of our biomimetic coatings. FTIR, micro-FTIR and micro-Raman spectroscopies were utilized to correlate the conformational and molecular aspects of the grafted polyand monodisperse dextran chains to their attractive biological properties.
منابع مشابه
In vitro assessment of bioactive coatings for neural implant applications.
Recent efforts in our laboratory have focused on developing methods for immobilizing bioactive peptides to low cell-adhesive dextran monolayer coatings and promoting biospecific cell adhesion for biomaterial implant applications. In the current study, this dextran-based bioactive coating technology was developed for silicon, polyimide, and gold, the base materials utilized to fabricate our prot...
متن کاملPreparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices
In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and silicon substrates using single ion beam sputtering technique. The physical and chemical properties of prepared films were investigated by different characterization technique. X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...
متن کاملPreparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications
Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...
متن کاملPreparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications
Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...
متن کاملDextran grafted nickel-doped superparamagnetic iron oxide nanoparticles: Electrochemical synthesis and characterization
In this paper, polymer grafted nickel-doped iron oxide nanoparticles are fabricated via an easy, one-step and fast electrochemical procedure. In the deposition experiments, iron(II) chloride hexahydrate, iron(III) nitrate nonahydrate, nickel chloride hexahydrate, and dextran were used as the bath composition. Dextran grafted nickel-doped iron oxides (DEX/Ni-SPIOs) were synthesized with applying...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016